A new ranking scheme for neutron-star low-mass X-ray binaries

Joel Fridriksson, Jeroen Homan & Ron Remillard

NS LMXBs: sub-classes

Astron. Astrophys. 225, 79–96 (1989)

ASTRONOMY AND ASTROPHYSICS

Two patterns of correlated X-ray timing and spectral behaviour in low-mass X-ray binaries

G. Hasinger¹ and M. van der Klis^{2,3}

Z sources

Atoll sources

XTE J1701-462

XTE J1701-462

- Evolution from Eddington to quiescence
- ullet \dot{M} -ranked sequence of CD/HID tracks (Lin et al. 2009)
 - No B-field, no viewing angle involved
- Can it be used to get a relative ranking for other NS LMXBs?

XTE J1701-462

- Can we find similar behavior in other sources?
- At low luminosities: yes, atoll transients
- At high luminosities: unsure
 - Investigate sources with strong secular changes:
 - Cyg X-2, Cir X-I, and GX I3+I

Cyg X-2

 $Cyg\text{-like }Z \leftrightarrow Sco\text{-like }Z$

Cyg X-2

Cir X-I & GX I3+I

NS LMXBs

- Conclusion: XTE J1701-462 is not alone. Behavior might be representative of NS-LMXBs
- Next step: rank 40+ NS-LMXBs based on CD/HID morphology (150+ ks, no dipping/eclipsing sources)
- Ranking criteria: presence & orientation of Z/atoll states/ branches
- Assumption: luminosity (mass accretion rate) determines
 CD/HID morphology

the ranking

the ranking

- Radiative stresses may play an important role:
 - Increasingly violent intensity swing at high Lx (up to factors of ~8 in 30 minutes).
 - Systematic shift in kHz QPO frequency ranges

- Radiative stresses may play an important role:
 - Increasingly violent intensity swing at high Lx (up to factors of ~8 in 30 minutes).
 - Systematic shift in kHz QPO frequency ranges

What's next?

- Study variability/spectral properties across entire range of mass accretion rate
- Type I X-ray bursts
- Add more sources (<150 ks, dipping/eclipsing NS LMXBs)
- Test the ranking scheme obtain luminosities
 - distance estimates (VLBA)
- Try something similar for black holes?

X-ray variability: kHz QPOs

Maximum upper kHz QPO frequencies

Lower mass accretion rates → higher kHz QPO frequencies

$$\nu_{K,rad} = \nu_K (1 - const \times \frac{L}{L_E})^{1/2}$$

Cyg X-2

Many short (few ks) observations spread over 15 years

